Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2072893

ABSTRACT

Introduction Recent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19. Materials and methods We studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty. Results For child mortality, headline cost-effectiveness was $650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was $23,000–65,000 if it were administered simultaneously with a COVID-19 vaccine <200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600–6100. Estimated benefit-to-cost ratios vary but are consistently high. Discussion Economic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays. Funding The contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting.

2.
J Glob Health ; 11: 05022, 2021.
Article in English | MEDLINE | ID: covidwho-1478403

ABSTRACT

BACKGROUND: This study sought to determine the presence of SARS-CoV-2 virus on surfaces that trainees and faculty of an academic eye clinic came into contact with during daily life at the time of the COVID-19 pandemic in New York City. METHODS: This cross-sectional analysis involved collection of at least two samples by teams on four different days (November 9, 2020 - December 18, 2020) using sterile swabs (Puritan HydraFlock, Garden Grove, CA). Collection sites were grouped into four zones depending on proximity and amount of time personnel spent there. Samples were transported to the laboratory in transport medium and RNA was extracted using the QIAamp DSP Viral RNA Mini Kit (Qiagen, Germantown, MD). Presence of viral RNA was investigated using the Luna Universal Probe One-step RT-qPCR kit (New England Biolabs, Ipwsich, MA). RESULTS: 834 samples were submitted. Two were positive for SARS-CoV-2 RNA. The first was a sample from a patient bathroom sink handle in the main emergency department. The second was a nasal swab sample from a staff member who had been assigned to collect samples. Prior to this positive result, this asymptomatic staff member had tested positive for COVID-19, had quarantined for two weeks, and had received a negative test. CONCLUSION: Though COVID-19 is currently widespread in the United States, this study shows that health care personnel working in New York City at the Columbia University Irving Medical Center have a low chance of encountering viral RNA on surfaces they are in close contact with during daily life.


Subject(s)
COVID-19 , RNA, Viral , Cross-Sectional Studies , Humans , New York City/epidemiology , Pandemics , SARS-CoV-2
3.
BMJ Glob Health ; 6(8)2021 08.
Article in English | MEDLINE | ID: covidwho-1356932

ABSTRACT

INTRODUCTION: As the world responds to COVID-19 and aims for the Sustainable Development Goals, the potential for primary healthcare (PHC) is substantial, although the trends and effectiveness of PHC expenditure are unknown. We estimate PHC expenditure for each low-income and middle-income country between 2000 and 2017 and test which health outputs and outcomes were associated with PHC expenditure. METHODS: We used three data sources to estimate PHC expenditures: recently published health expenditure estimates for each low-income and middle-income country, which were constructed using 1662 country-reported National Health Accounts; proprietary data from IQVIA to estimate expenditure of prescribed pharmaceuticals for PHC; and household surveys and costing estimates to estimate inpatient vaginal delivery expenditures. We employed regression analyses to measure the association between PHC expenditures and 15 health outcomes and intermediate health outputs. RESULTS: PHC expenditures in low-income and middle-income countries increased between 2000 and 2017, from $41 per capita (95% uncertainty interval $33-$49) to $90 ($73-$105). Expenditures for low-income countries plateaued since 2014 at $17 per capita ($15-$19). As national income increased, the proportion of health expenditures on PHC generally decrease; however, the fraction of PHC expenditures spent via ambulatory care providers grew. Increases in the fraction of health expenditures on PHC was associated with lower maternal mortality rate (p value≤0.001), improved coverage of antenatal care visits (p value≤0.001), measles vaccination (p value≤0.001) and an increase in the Health Access and Quality index (p value≤0.05). PHC expenditure was not systematically associated with all-age mortality, communicable and non-communicable disease (NCD) burden. CONCLUSION: PHC expenditures were associated with maternal and child health but were not associated with reduction in health burden for other key causes of disability, such as NCDs. To combat changing disease burdens, policy-makers and health professionals need to adapt primary healthcare to ensure continued impact on emerging health challenges.


Subject(s)
COVID-19 , Health Expenditures , Child , Developing Countries , Female , Humans , Pregnancy , Primary Health Care , SARS-CoV-2
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: covidwho-1233774

ABSTRACT

The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed "trained immunity." An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vaccines arrive. The broad protection induced by LAVs would not be compromised by potential antigenic drift (immune escape) that can render viruses resistant to specific vaccines. LAVs might offer an essential tool to "bend the pandemic curve," averting the exhaustion of public health resources and preventing needless deaths and may also have therapeutic benefits if used for postexposure prophylaxis of disease.


Subject(s)
COVID-19/prevention & control , Immunity, Innate , Pandemics/prevention & control , Vaccines/immunology , Adaptive Immunity , COVID-19/immunology , COVID-19 Vaccines/immunology , Immunity, Heterologous , Immunologic Memory , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL